Table 2. Rationale for use of indicators in water-resource-quality-monitoring programs for meeting water-management objectives relevant to selected suruses. These are status and trends indicators meant to illustrate the suitability of a water resource for use by a management objective rather than demonstrated of a particular management objective on that water resource—Continued | Categories of indicators | Human health and aesthetics | | Ecological condition | | Economic concerns | | | |---|--|--|--|--|---|--|----------------------| | | Consumption of fish, shellfish, and wildlife | Public water
supply and food
processing | Recreation: Boating,
swimming, and fishing
(including catchability) ¹ | Aquatic and semi-
aquatic life, protected
species and aquaculture | Industry: Makeup
and cooling water,
and other types
of water | Transportation and hydropower | | | | | | Part 2—Indicators of chemic | cal response and exposure | | | | | Oxygenation: Dissolved
oxygen, BOD, benthic
oxygen demand, redox
potential of sediment,
reaeration potential,
assimilative capacity. | | Oxidation state
affects process-
ing techniques
and palatability
due to metallics
and organics. | Respiration of fish.
Anaerobic water is
unaesthetic [31]. | Respiration requires oxygen. Sediment redox affects toxicity, benthic community [36]. | Oxygen alters utility of water for waste discharge. | | | | Ionic strength: pH, hardness, alkalinity, acid neutralizing capacity, salinity, conductivity, total dissolved solids. | Ionic strength
and pH affect
availability of
chemicals. | Salinity and pH
affect corrosive-
ness. Salinity
alters potability
and affects
treatment. | and chemical processes | Ionic strength affects life, toxicity, and chemical processes. Hardness and pH alter habitat suitability [16]. | Salinity and pH affect corrosive- ness and utility for cleaning and textile industry. Solids accumulate on equipment. | Density influences barge loading capacity. pH affects corrosion of turbines. | | | Nutrients: Nitrogen phosphorus. | | Influences algal
growth thus
potability and
impingement
on intake screens
[31]. | Affects fish biomass, phy-
toplankton and macro-
phyte growth [31]. | Affects productivity,
toxicity and com-
munity structure
[31]. | | | | | Potentially hazardous chemicals in water. | Affects bio-
accumula-
tion by food
organisms [33]. | [1]. | Toxic to swimmers. | Toxic to aquatic life [16, 36]. | Affects fitness for chemical industry. | | Affeo
soil
and | | Odor and taste, unaesthetic chemicals. | Odor in fish unat-
tractive to con-
sumer. | | Unattractive to user of water. | Alters aquaculture product market-ability. | | | |